
A data structure for managing

OpenGL vertex buffers

Micha l Szopiński, BSc

March 24, 2024

Abstract

This document is a write-up of an algorithmic problem that I encoun-
tered while working on a hobby project of mine. Described herein is a
data structure for managing contiguous memory for the purpose of draw-
ing vertices in OpenGL.

1 Overview

To keep myself busy while unemployed, I’ve been working on a video game with
a voxel-based world similar to Minecraft. The game uses OpenGL to render the
world cube-by-cube. Arbitrary modifications to the world are allowed, which
means that cubes may appear, disappear or be modified at any position at any
moment.

OpenGL exposes the drawArrays function as the primary means of drawing
vertices. In great simplicifcation, the function accepts a pointer to a contiguous
buffer of arbitrary data and applies a user-defined algorithm to render primitives
based on that data. In this case, a single entry in the buffer describes a single
cube.

When the world is first loaded, the buffer is filled with thousands of cubes.
When a cube is removed from the world, the array may be shortened, or a “gap”
between elements may appear. Entries inside the gap are adjusted to instruct
OpenGL not to draw any vertices based on those entries.

The game performs best when the least amount of cubes are drawn. Care
must be taken not to expand the buffer, and when new cubes are added, any
existing gaps must be reused if possible. This creates the need for a data

1

structure that would make it possible to quickly find unallocated gaps in a
contiguous buffer.

The solution I designed uses a tree data structure to keep track of which parts
of an address space of buffer indices are currently in use (fig. 1). Each node uses
a 64-bit integer to keep track of 64 divisions of the address space. Terminal
(leaf) nodes keep track of individual addresses. A high n-th bit indicates that
the n-th child node is fully in use, a low bit indicates that the child node may
be used for further allocations.

[0; 4095]
Usage: 10000000...

[0; 63]
Usage: 11111111...

[64; 127]
Usage: 11100000...

[128; 191]
Usage: 00010000... ...

[0; 262143]
Usage: 00000000...

...

Allocated addresses:
111001000000000000...

Figure 1: Tree data structure for keeping track of allocated addresses

Efficient allocation is possible thanks to std::countr one, which on x86 ar-
chitectures is implemented using a single CPU instruction. Allocation begins
by asking the root node to allocate an address. The root node finds the first
unused child using std::countr one and asks that child to perform the alloca-
tion. Eventually, a terminal node is reached, which marks a single address as
allocated and updates usage data in parent nodes.

Deallocation is implemented in a similar manner. The root node is asked
to deallocate a specific address. The node calculates which child keeps track of
the specified address and delegates the deallocation to that child. Eventually, a
terminal node is reached, which updates its own and its parents’ usage data.

The tree structure is hidden behind a wrapper class named
kh::AddressSpace. The class implements an optimization that keeps track of
which terminal node was previously used to allocate an address, which speeds
up bulk allocation.

When the address space is fully used and an attempt at allocation fails, the
wrapper class calls escalate on the root node. This causes the root node to

2

consolidate all of its children into a single child and expands the root node’s
range. The structure can therefore handle infinite address spaces.

To limit the amount of memory consumed by a single node, each non-
terminal node allocates an array of 64 sub-nodes and constructs them as neces-
sary. By doing so, it only needs one pointer to maintain a reference to all of its
children. Because the nodes are numerous and subject to frequent allocation, the
memory for their storage is allocated by a std::pmr::polymorphic allocator
combined with a std::pmr::unsynchronized pool resource.

3

2 Code

2.1 address space.hpp

#ifndef ADDRESS_SPACE_HPP
#define ADDRESS_SPACE_HPP

#include <bit >
#include <cstdint >

namespace kh {
/*

@brief Class for quickly assigning and unassigning addresses in a contiguous range.
*/
class AddressSpace {

public:
/*

@brief Assign an address in the address space.

@returns The assigned address
*/
std:: size_t allocate ();

/*
@brief Free an address in the address space.

@param address The address to be deallocated
*/
inline void deallocate(std:: size_t address) {

root.deallocate(address);
}

private:
class AllocationNode {

public:
/*

@brief Create an allocation node.

@param rangeStart Lowest address managed by this node
@param parent Parent node
@param divisor Address space division level

*/
AllocationNode(std:: size_t rangeStart = 0, AllocationNode *parent = nullptr , int divisor =

0);

AllocationNode(AllocationNode &) = delete;
AllocationNode& operator =(AllocationNode &) = delete;

AllocationNode(AllocationNode &&);
AllocationNode& operator =(AllocationNode &&);

˜AllocationNode ();

/*
@brief Allocate an address in this node or in any of its children.

@param[out] The terminal node used to peform the allocation , or nullptr if the
allocation failed

@returns The assigned address. If the allocation failed , the value is undefined.
*/
std:: size_t allocate(kh:: AddressSpace :: AllocationNode *& terminalNode);

/*
@brief Deallocate an address in this node or in any of its children.

@param address The address to be deallocated
*/
void deallocate(std:: size_t address);

/*
@brief Expand the tree by creating a new node and moving all children into it.

*/
void escalate ();

private:
/*

@brief Mark the specified child as used. If the node becomes fully allocated , update
the parent.

4

*/
void markChildUsed(AllocationNode* child);

/*
@brief Mark the specified child as unused. If the node becomes partially unallocated ,

update the parent.
*/
void markChildUnused(AllocationNode* child);

/*
@brief Check if the node can be used to allocate any more children.

*/
inline bool isFullyAllocated () const {

return std:: countr_one(usage) == 64;
}

std:: size_t rangeStart;
int divisor;

AllocationNode *parent = nullptr;
AllocationNode *children;
int childCount = 0;

uint64_t usage = 0;
};

/*
@brief The top -level allocation node.

*/
AllocationNode root;

/*
@brief Reference to the last node used for allocation. Optimizes bulk allocation.

*/
AllocationNode *lastTerminal = nullptr;

};
}

#endif

2.2 address space.cpp

#include "address_space.hpp"
#include "memory.hpp"

std:: size_t kh:: AddressSpace :: allocate () {
// attempt to reuse last allocation node
if (lastTerminal != nullptr) {

std:: size_t address = lastTerminal ->allocate(lastTerminal);

if (lastTerminal != nullptr)
return address;

}

// if the last allocation node is unavailable , use the root node
std:: size_t address = root.allocate(lastTerminal);

if (lastTerminal != nullptr)
return address;

// if root node allocation failed , expand tree and try again
root.escalate ();
return root.allocate(lastTerminal);

}

kh:: AddressSpace :: AllocationNode :: AllocationNode(std:: size_t rangeStart , AllocationNode *parent , int divisor)
: rangeStart(rangeStart), parent(parent), divisor(divisor) {
// allocate memory for 64 children if the node is not terminal
if (divisor == 0)

return;

children = std::pmr:: polymorphic_allocator <AllocationNode >(& allocationNodePool).allocate (64);
}

kh:: AddressSpace :: AllocationNode :: AllocationNode(AllocationNode && other) {
*this = std::move(other);

5

}

kh:: AddressSpace :: AllocationNode &kh:: AddressSpace :: AllocationNode :: operator =(AllocationNode && other) {
rangeStart = other.rangeStart;
divisor = other.divisor;
parent = other.parent;
children = other.children;
other.children = nullptr;
childCount = other.childCount;
other.childCount = 0;
usage = other.usage;

return *this;
}

kh:: AddressSpace :: AllocationNode ::˜ AllocationNode () {
// destroy each constructed child
for (int i = 0; i < childCount; i++)

std:: destroy_at(children + i);

// deallocate memory for children
if (children != nullptr)

std::pmr:: polymorphic_allocator <AllocationNode >(& allocationNodePool).deallocate(children , 64);
}

std:: size_t kh:: AddressSpace :: AllocationNode :: allocate(AllocationNode *& terminalNode) {
// check if allocation possible
if (isFullyAllocated ()) {

terminalNode = nullptr;
return 0;

}

// find unallocated index
int freeIndex = std:: countr_one(usage);

// if this is a terminal node , allocate an address
if (divisor == 0) {

usage |= 1ULL << freeIndex;

// update parent usage
if (isFullyAllocated () && parent != nullptr)

parent ->markChildUsed(this);

terminalNode = this;
return rangeStart + freeIndex;

}

// if not a terminal node , ask a child to allocate an address
kh:: AddressSpace :: AllocationNode *child = children + freeIndex;

// ensure that the child is constructed
if (freeIndex >= childCount) {

std:: size_t childRangeStart = rangeStart + (static_cast <std::size_t >(freeIndex) << divisor);

std:: construct_at(child , childRangeStart , this , divisor - 6);
childCount ++;

}

// delegate allocation to the child
std:: size_t output = child ->allocate(terminalNode);

// update parent usage
if (isFullyAllocated () && parent != nullptr)

parent ->markChildUsed(this);

return output;
}

void kh:: AddressSpace :: AllocationNode :: escalate () {
// create a new node to replace this one
AllocationNode newThis(rangeStart , nullptr , divisor + 6);
newThis.childCount = 1;
newThis.usage = isFullyAllocated ();
newThis.children [0] = std::move(*this);
newThis.children [0]. parent = this;

// update the parent pointer on grandchild nodes
for (int i = 0; i < newThis.children [0]. childCount; i++)

newThis.children [0]. children[i]. parent = &newThis.children [0];

*this = std::move(newThis);

6

}

void kh:: AddressSpace :: AllocationNode :: markChildUsed(AllocationNode* child) {
// calculate child index and mark it as used
usage |= 1ULL << (child - children);

// update parent usage
if (isFullyAllocated () && parent != nullptr)

parent ->markChildUsed(this);
}

void kh:: AddressSpace :: AllocationNode :: deallocate(std:: size_t address) {
// find out which child or bit is affected
int index = (address - rangeStart) >> divisor;

// notify the parent that this child is no longer fully used
if (isFullyAllocated () && parent != nullptr)

parent ->markChildUnused(this);

// update usage
if (divisor == 0)

usage &= ˜(1ULL << index);
else if (index < childCount)

children[index]. deallocate(address);
}

void kh:: AddressSpace :: AllocationNode :: markChildUnused(AllocationNode* child) {
// update parent usage
if (isFullyAllocated () && parent != nullptr)

parent ->markChildUnused(this);

// calculate child index and mark it as used
usage &= ˜(1ULL << (child - children));

}

3 Tests

To test the data structure, the following code was run:

AddressSpace space;

for (int i = 0; i < 190; i++)
std::cout << "allocated␣" << space.allocate () << std::endl;

space.deallocate (13);
space.deallocate (17);
space.deallocate (70);
space.deallocate (71);
space.deallocate (150);
space.deallocate (152);
std::cout << "deallocated␣13,␣17,␣70,␣71,␣150,␣152" << std::endl;

for (int i = 0; i < 10; i++)
std::cout << "allocated␣" << space.allocate () << std::endl;

The output was as follows:

...
allocated 185
allocated 186
allocated 187
allocated 188
allocated 189
deallocated 13, 17, 70, 71, 150, 152
allocated 150
allocated 152
allocated 190
allocated 191
allocated 13
allocated 17
allocated 70
allocated 71

7

allocated 192
allocated 193

Following the deallocation, the first two allocations (150, 152) could be attributed to the “last terminal”
optimization, which filled out the gaps in the previously used terminal node. The two subsequent allocations
(190, 191) used up the remaining two places in the final terminal node.

Once the previously used terminal node was exhausted, allocations proceeded from the root node. Gaps
13, 17, 70 and 71 were filled. Eventually, there were no more gaps, and allocations proceeded from a new
terminal node [192; 255].

The data structure was successfully used to implement cube rendering (fig. 2).

Figure 2: A screenshot of the game.

8

	Overview
	Code
	address_space.hpp
	address_space.cpp

	Tests

